NITrROGEN CYyCLING
UNDER DIFFERENT SOIL
[ANAGEMENT SYSTEMS

Dean A. Martens

USDA-ARS National Soil Tilth Laboratory
2150 Pammel Road
Ames, lowa 50011

1. Introduction
II. Management Systems
A. Soil Property Changes with Management
B. Sustainability
C. Nutrient Cycling
HI. Carbon/Nitrogen Interactions with Different Management Systems
. Distribution of Nitrogen Forms
. Microbial Biomass
. Ammonification or N Mineralization
. Nitrification
. Nitrogen Immobilization
. Nitrogen Losses
IV. Conclusions
References

A ReR-- I

I. INTRODUCTION

Soil tillage is one of the oldest known management techniques to mine organic
nutrient reserves for enhancing crop production. The side-effects of initiating
tillage are a rapid reduction of soil organic matter and soil structure resulting in in-
creased erosion and a loss of soil nutrients, especially nitrogen (N), phosphorus
(P), and potassium (K). Conservation tillage, especially no-tillage, limits loss to
our soil resource base and is one of our most important options for sustaining eco-
nomic food production. Yet adoption of no-tillage in the major U.S. agricultural
areas, which rapidly increased in the early 1990s, has leveled for soybean and has
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decreased for corn production. My focus is to review the limitations of N cycling
in conservation tillage, especially no-tillage, that has been discovered in the last
30 years of research and to evaluate scientific studies as a means to understand
how residue and nutrient stratification in no-tillage impacts the N cycle.

II. MANAGEMENT SYSTEMS

The Conservation Technology Information Center (CTIC, 1998) defines tillage
systems based on the amount of residue remaining on the soil surface. Conserva-
tion tillage results in >30% of the residues remaining on the surface and includes
the practices of no-till, ridge-till or mulch-till. Reduced tillage results in 15-30%
of the residues remaining on the surface and intensive tillage with <15% surface
residue remaining. The following are commonly accepted definitions for the tillage
systems discussed in this review (CTIC, 1998).

No-tillage (NT). A narrow seed band is prepared during planting with the rest
of the soil undisturbed from harvest to planting unless nutrients are injected.
Weed control is by herbicide and/or cover crop.

Strip tillage (ST). A form of NT management when a strip of soil is prepared
generally in the fall where nutrients are knifed and then in the spring, the seed
is planted in this strip.

Ridge-tillage (RT). Planting is completed in a seedbed prepared on ridges
with sweeps, disk openers, coulters, or row cleaners. The residue left on the sur-
face between ridges and weed control is accomplished with herbicide and/or
cultivation.

Mulch-tillage (MT). The soil is disturbed prior to planting by tillage imple-
ment such as chisels, field cultivators, disks, sweeps, or blades with weed con-
trol by herbicide and/or cultivation.

Conventional-tillage (CT). Generally refers to soil inversion by moldboard
plowing followed by a secondary tillage operation such as discing and/or har-
rowing. Weed control may be accomplished by cultivation or through use of her-
bicides.

An additional tillage system that can be used is called stubble-mulch (SM) farm-
ing. This involves the mixing of the soil by undercutting the residue with stirring
and mixing machine and not inverting the residue (Mannering and Fenster, 1983).
Terminology such as “reduced tillage” or “minimum tillage” as used in the past
may or may not qualify as conservation tillage depending on the level of residue
remaining at the surface after planting.

No single tillage system, including CT, is suitable for all soils or climatic con-
ditions due to the unique properties of individual soils that determine their limita-
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tions and suitability for utilizing conservation tillage methods. There are many
advantages of conservation tillage over CT. The reduction in size and cost of ma-
chinery, fossil fuel usage, and total labor costs makes conservation tillage attrac-
tive to many producers.

Management-related distribution of crop residues across the soil surface can af-
fect soil biological properties and may result in economic differences for tillage
systems. The biological implications of residue-related changes in soil water and
temperature on plant development, nutrient uptake, and microbial activity are cli-
mate and soil specific. Even though the advantages of conservation tillage are
many, a perceived reduction in total yields or a need for additional N fertilizers re-
sulting from the change in soil biological activities has resulted in farmers aban-
doning NT practices in recent years.

A. SOIL PROPERTIES WITH MANAGEMENT

Tillage systems affect soil productivity through influences on soil properties.
Long-term NT results in physical soil properties that may or may not be different
from CT, but NT typically has a large impact on the biological properties influ-
encing the timing and amount of nutrient cycling. The lack of soil disturbance with
the presence of plant residue cover are primarily responsible for the environmen-
tal benefits noted for conservation tillage. Yet, the lack of soil tillage has been re-
sponsible for most of the perceived management problems associated with reduced
or NT systems. Notable improvements that occur with conservation tillage include
decreased erosion, improved water quality and crop-available water, and enhanced
soil quality. Soil quality has been suggested as a tool for assessing long-term sus-
tainability of agricultural practices (Lal, 1991; Papendick and Parr, 1992). Soil
properties that have been suggested to affect soil quality include aggregate stabil-
ity (Arshad and Coen, 1992), bulk density (Linn and Doran, 1984), organic mat-
ter (Pajasok and Kay, 1990; Arshad and Coen, 1992), and soil water infiltration
and availability. A summary of the modification of soil properties with different
tillage practices is shown in Table L

1. Erosion

Conservation tillage decreases soil erosion almost in direct proportion to the
amount of soil cover left following the tillage practice (Mannering and Fenster,
1977) and other researchers have reported that NT reduces erosion compared to
CT (Mueller ef al., 1984; Wendt and Burwell, 1985; West ef al., 1992; Dabney et
al., 1993). There also appears to be erosion benefits from the lack of disturbance
aside from the strong soil cover and soil-loss relationship. Blevins and Frye (1993)
reported soil losses of 426 kg ha™! with NT soybeans [Glycine max (L.) Merr.]
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without cover crop and 269 kg ha™! with a winter wheat (Triticum aestivum L.)
cover crop. A CT soybean management system had soil erosion of 9050 kg ha™'
without a cover crop, and 1142 kg ha™! with a wheat cover crop. The decrease in
soil erodibility with NT was attributed to the lack of soil disturbance (Blevins er
al., 1990) due to an increase in soil consolidation. The consolidation effect depends
on the length of time elapsed since the tillage operation (Mutchler and Carter,
1983; Van Doren et al., 1984) and results from the combined effects of raindrop
impact and drying rates (Gerard, 1987). Larney and Kladivko (1989) found soil
consolidation effects move closer to the surface with decrease in tillage intensity.

Soil erosion is determined largely by the erosivity of the rainfall events (runoff)
and erodibility (sediment load) of the soil. Conventional and MT disrupt surface
crusts and increases surface roughness and potential detention volume especially im-
mediately after tillage, resulting in less surface runoff with the first major storm event
compared to NT (Mueller ef al.,, 1984). However, surface roughness is rapidly de-
creased with CT and subsequent rainfall events that exceed the surface storage and
infiltration capacities will result in large soil losses. Mueller ez al. (1984) reported
that first-year NT reduced erosion 18 and 4% compared to CT and MT, respective-
ly, and the second year, NT decreased erosion 83 and 46% compared to CT and MT,
respectively, even though NT had larger runoff volumes than CT or MT. Their study
also found that erosion during the second year of the study from the different tillage
systems was reduced 70 and 47% for NT and MT, respectively, but increased 48%
for CT. No-tillage decreases the erodibility of the soil due to an increase in the sur-
face residue, consolidation and stability of the surface soil aggregates.

The top layer of soil is the primary source of fertility for the majority of our pro-
ductive soils and uncontrolled erosion can significantly reduce production capac-
ity. Burwell ez al. (1975) reported that sediment transport accounted for more than
95% of the N and P lost from fallow, continuous corn and rotational corn systems
under CT. The economic significance of erosion was measured by Rasmussen and
Douglas (1991) who found wheat yield reductions from erosion on a soil with a
slope of 1-15% was due to reduced head density, dry matter yield, and N uptake,
at six study sites. The yield reductions ranged from 0.84-0.94 of yield with no
erosion for a single year with yield reductions continuing for each cropping year.
Bauer and Black (1992) suggested that the loss of productivity from erosion was
due to loss of nutrients and biological activity rather than a loss in available water
capacity.

2. Aggregate Stability

Conservation tillage increases the structure of the soil surface. Drees et al.
(1994) reported that long-term NT changed the granular, fragmented structure of
CT to a platy structure with a concomitant two- to three-fold increase in soil ag-
gregates. Vyn and Rainbault (1993) also reported that after 15 years, NT result-
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ed in larger soil aggregates in a silt loam soil when compared to CT. Mahboubi
et al. (1993) found after 28 years, aggregate stability at two different Ohio sites
was increased 114% with NT compared to CT in the traffic zone and increased
138% in the noniraffic row zone. West ef al. (1992) determined that aggregate
stability after 5 years of NT, increased 50-76% on three soils that were convert-
ed from CT.

Staricka er al. (1992) found that with the first tillage pass, CT incorporated <5%
of introduced tracers into soil aggregates and after 3 years, subsequent CT incor-
porated 33% of the tracers into soil aggregates and MT incorporated 38% sug-
gesting that tillage-incorporated materials such as residue, fertilizers, pesticides,
etc., remain in interaggregate spaces during the first year of application where they
are more susceptible to decomposition and plant uptake. Crop residues decompose
faster as soil to residue contact increases (Brown and Dickey, 1970), and the ef-
fect of incorporated crop residue on soil stabilization may be greatly limited by
deep incorporation or enhanced by limited or no incorporation (Staricka er al.,
1991).

Bruce er al. (1990,1992,1995) reported that soil aggregate stability was in-
creased with MT and NT compared to CT, and concluded that different crop
residues have different effects on aggregate stability. In their study, NT grain
sorghum (Sorghum bicolor L.) planted into a crimson clover winter cover crop (to-
tal stover 14.3 Mg ha™! year—!) was far more effective than planting soybean (to-
tal stover 11.6 Mg ha™! year!) for increasing aggregate stability (Bruce ez al.,
1992, 1995) even though approximately 12 Mg sorghum residue ha™! year ! was
adequate for increasing aggregate stability, suggesting that quantity of the residue
is not the only factor to be considered. They also found that any surface tillage
could rapidly destroy the aggregate differences between the crop residues.

3. Bulk Density

No-tillage generally results in a more consolidated soil surface with greater
residue cover than does CT. Often, it is the appearance of this increased consoli-
dation that suggests that NT increased soil bulk density, because time since tillage
greatly affects the apparent consolidation of soil (Mutchler and Carter, 1983; Van
Doren et al., 1984). Consolidation occurs from the combined effects of raindrop
impact and drying rate that helps increase cohesion (Gerard, 1987) and is influ-
enced by soil type, drainage, and climate.

The increase in consolidation is generally perceived to be an increase in bulk
density. Tillage has a pronounced effect on distribution of crop residues and in-
creases in soil organic matter with NT can offset the consolidation process. Tillage
can reduce soil bulk density by movement and rearrangement of soil aggregates
and the incorporated residue that may or may not be homogeneously mixed in the
soil pore space. Conventional tillage incorporates at least 67% of the crop residue
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in the 10--20 cm depth while MT incorporates crop residue in the 1-10 cm depth
(Allmaras e al., 1996). Studies have found that NT results in an increase in bulk
density (Miekle ez al., 1986; Bruce ef al., 1990; Vyn and Rainbault, 1993; Pierce et
al., 1994) or that NT does not increase bulk density (Blevins er al., 1977, Tollner ez
al., 1984; Hill and Cruse, 1985; Bauer and Black, 1992; Mahboubi er al., 1993; Is-
mail er al., 1994; Lal et al., 1994; Logsdon et al., 1999). The differences in findings
may be explained by location and timing of the sampling. Gantzer and Blake (1973)
found after CT for 6 years, bulk density was significantly lower than NT when mea-
sured shortly after spring tillage. Little differences were noted between the two sys-
tems when the bulk densities were measured in the fall after crop harvest. Blevins
et al. (1983) reported after 10 years of management, no differences in CT and NT
bulk densities were determined when measured 1 year after plowing. Mahboubi ez
al. (1993) found no significant change in bulk density in two Ohio soils under con-
tinuous corn NT and CT after 28 years. Although, it was noted that bulk density
measurements taken several weeks after tillage were lower for CT compared to NT.
Logsdon ez al. (1999) found that after 3 years, uncontrolled wheel traffic slowly in-
creased bulk density in both NT and MT, but NT was less dense than MT in the
nontraffic row in a field with controlled wheel traffic.

4. Organic Matter

Soil organic matter contains plant nutrients that are mineralized as organic mat-
ter decomposes reducing the need for inorganic inputs. Intensive and often exces-
sive tillage practices result in a decreased amount of residue remaining due to an
accelerated rate of organic matter decomposition by increased microbial oxidation
in the tillage zone.

No-tillage generally results in an increase in soil organic maiter in the residue
layer and the change in organic matter content is dependent on previous soil man-
agement, cropping sequence, and fertility levels. Studies have reported that NT in-
creased soil organic C (OC) (Dick, 1983; Miekle ez al., 1986; Dick er al,, 1991;
Wood et al., 1991a; West et al., 1992; Edwards ef al., 1992; Mahboubi et al., 1993;
Ismail ef al., 1994; Pierce et al., 1994; Lal et al., 1994; Franzluebbers et al., 1994;
Christensen et al., 1994; Hunt ef al., 1996). Introducing agricultural practices into
permanent pasture or prairies has resulted in less OC remaining with NT or CT
practices. Blevins et al. (1977) found that continuous corn decreased OC compared
to the native pasture from 19 g kg™! to 15.9 g kg™ ! with NT and t0 9.8 g kg™’
with CT. Suboptimum N rates resulted in a further decrease in OM levels. Ismail
et al. (1994) reported that at the same site of Blevins ez al. (1977) after introduc-
tion of a winter rye cover crop, the OC level increased in both the CT and NT treat-
ments with the NT returning to the level of the original sod under optimum N fer-
tilization. Dabney et al. (1993) reported an OC loss in a permanent pasture
converted to soybean of 22.4 and 13.3% for CT and NT, respectively, during a 2-




152 DEAN A MARTENS

year study. If the surface residue is removed as in silage production systems, then
OC has been reported to not increase with NT or MT compared to CT (Angers ef
al., 1993; Hunt et al., 1996).

The type of crop residue remaining may also influence soil organic matter se-
questration. Bruce er al. (1990) found a sorghum-soybean rotation following win-
ter wheat did not increase OC after § years of NT compared to CT, but Bruce et
al. (1995) found a NT sorghum with a crimson clover winter cover crop rotation
resulted in a 3.5-fold increase in OC within 4 years. Edwards ef al. (1992) report-
ed that after NT for 10 years, a continuous corn-wheat cover rotation increased
OM faster than corn-wheat cover-soybean-wheat cover or a continuous soybean
cropping system and suggested that addition of soybean to the rotation had a neg-
ative affect on OM sequestration.

The mechanism(s) by which conservation tillage, especially NT, reduce C loss
or initiate C sequestration may be due to several factors. First, the reduction of C
losses from the soil due to decreased erosion rates under NT limits C losses from
the system as compared with C loss from CT. Second, an equal amount of rain will
cause a field under NT to reach a more anaerobic state (reduced O, availability)
faster than a field under CT (Doran, 1980a). The reduction in oxygen concentration
can cause changes in the decomposition rate of the plant residues (Wershaw, 1993).
Degradation of organic polymers released from decaying vegetation involves de-
polymerization and oxidation reactions that are catalyzed by soil enzymes. Poly-
saccharide (cellulose and hemicellulose) and protein polymers undergo depoly-
merization reactions and structural components such as polyphenols are degraded
mainly by oxidation reactions (Wershaw, 1993) resulting in the carbohydrates and
amino acids from fresh liter decomposed equally fast under aerobic and anaerobic
conditions, while structural component mineralization under reduced 02 tensions
was hampered by inefficient and slow bacterial hydrolysis (Kristensen er al., 1995).
The CT decomposition rates results in buried residue decomposing 3.4-fold faster
than if left as surface mulch (Beare er al., 1993), which may be due to spatial sep-
aration of the residue C and the soil N (Holland and Coleman, 1987). Third, with
microbial biomass increases up to sixfold by NT management, a greater amount of
the residue C is cycled in biomass rather than released as CO,, (Lynch and Panting,
1980), and maximum biomass C with conversion of CT to NT can be obtained in
time as short as 1 year (Staley ez al., 1988). Fourth, NT resuits in an increase in the
fungal to bacterial activity ratio, resulting in an accumulation of C in less decom-
posable fungal biomass and less CO, released as compared with low fungal to bac-
terial activity ratios (Holland and Coleman, 1987).

5. Soil Water

Water is the driving variable in agriculture and especially in Great Plains agri-
culture where sustainability depends on efficient use of incident precipitation. A
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summary of the effects of different tillage practices on modification of soil water
availability is shown in Table II. In dryland agriculture, a fallow period has been
traditionally used to conserve moisture for the next years crop, but research has
found that only 16-25% of the water during the fallow period is stored by the soil
(Deibert et al., 1986; Peterson er al., 1996). The practice of NT can increase this
to 40% due to the reduction in evaporation early in the fallow when the residues
still cover the surface (Peterson et al., 1996). The reduction of surface water evap-
oration and greater infiltration with conservation tillage helps to conserve mois-
ture (Blevins er al., 1984) and allows for double cropping in areas with longer
growing seasons or a reduction in the fallow time in areas with dryer climates. Al-
though NT may increase available water-holding capacity for the organic-enriched
surface (0—15 cm, Mahboubi ez al., 1993; 0—60 cm, Tollner ef al., 1984), NT may
not significantly increase the total amount of water stored in the soil profile com-
pared with CT (Merrill e al., 1996). Adaption of NT and more intensive cropping
rotations results in more efficient use of precipitation due to the reduction of the
frequency of inefficient fallow practices and using water for transpiration that
would be lost during fallow through evaporation, runoff, and deep percolation
(Farahani et al., 1998). The increased water-use efficiency results in increased dry
matter yields (Smika, 1990; Peterson et al., 1996; Merrill ez al., 1996).

In portions of the U.S. agricultural sector that receive more moisture, NT results
in the most favorable soil water status during dry years compared to MT and CT,
but may limit yields in wet years compared to MT on fine textured soils (Ghaf-
farzadeh er al., 1997). In general, coarser-textured soils that have higher moisture
stress during a growing season do better under NT than CT management (Dick,
1983; Dick and Van Doren, 1985; Dick er al., 1991).

No-tillage systems also have been found to potentially improve surface runoff
and ground water quality. The major consequence of not disturbing the soil sur-
face with NT is the enhancement of porosity. Shipitalo et al. (1994) reported that
the amount of water moving through earthworm burrows in NT established for 20
years increased from 0.25% in CT to approximately 5% in NT. Dunn and Phillips
(1991) reported that in established NT, 83% of the water moved through 0.070%
of the soil volume, which was increased from 73% of the water moving through
0.026% of the soil volume in CT. Waddell and Weil (1996) found that NT had
greater sorptivity than RT causing NT plots to wet faster.

The improvement of groundwater quality with tillage systems has focused on
nitrate leaching, because nitrate is readily leached from the soil. This fact is strik-
ing when NOJ concentrations under intensively managed agricultural systems
(>25 mg N L") are compared to baseline concentrations of <1 mg N L~" under
native forest (Weil et al, 1990). Although water movement through soils is in-
creased with NT, the load of NO; may not increase compared with CT (Eck and
Jones, 1992). Leaching of mineralized N from surface residue placement has been
found to be less due to immobilization, whereas mineralized N from incorporated
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residue was not immobilized and the majority of N was subject to leaching loss
(Cochran et al., 1980). Angle er al. (1984, 1993) reported that amounts of NOJ
leached below NT were significantly less than amounts of NOJ leached below CT
in Maryland due to the larger amounts of NOJ immobilized with increasing soil
organic matter and crop utilization. Wood ez al. (1991b) found less profile NOZ
and higher organic N in newly established NT systems compared to CT in a 4-year
Colorado study. Dou er al. (1995) reported in a Pennsylvania study that NT re-
duced the amount of NOJ accumulated in the 0-120 cm soil profile to one-half of
the NOJ levels in CT whether under legumes or commercial N fertilizer. Although,
Thomas er al. (1973) concluded that lower NO; concentrations under NT could
be attributed to greater leaching losses. In CT soils converted to NT, the initial in-
crease in infiltration rates under NT may leach from the soil NO;™ that accumu-
lated under CT, while the soil processes occurring under the new NT system would
be acting to limit future N leaching.

In a Kentucky experiment, Blevins er al. (1990) found the highest levels of
runoff, nitrate, P, and atrazine and sediment losses were observed for CT when
compared to MT or NT systems. Angle ez al. (1984) reported that a CT watershed
lost ninefold more runoff compared to a NT watershed. This difference in runoff
meant a loss of 370 and 9 kg ha™! for suspended sediment from CT and NT man-
aged watersheds, respectively, and reduction of total N lost from 1199 g ha™! in
the CT watershed to 87 g total N ha™! for the NT watershed. Waddell and Weil
(1996) reported runoff time increased from 7.2 min with RT to 26.3 min for N'T
allowing more water infiltration, but immediately after tillage, CT and MT may
reduce surface runoff due to increased surface roughness (Mueller et al., 1984).
The timing of tillage before runoff measurements may explain why researchers
have found reduced runoff in NT (Johnson ez al., 1979; Langdale et al., 1979; Mc-
Gregor and Greer, 1982) or no reduction or even increases in runoff from NT com-
pared to CT (Mannering et al., 1975; Siemans and Oschwald, 1976; Lindstrom ef
al., 1981; Lingstrom and Onstad, 1984). The reduction in surface runoff with con-
servation tillage is important since Johnson et al. (1979) reported that 75-99% of
the fertilizer and herbicides losses from soil surface application occurred in runoff
water. The reduction of erosion with conservation tillage is important, but the low-
er runoff volumes from these practices reduces chemical loss because transport is
proportional to the total runoff volume (Laflen er al., 1978). Increased potential
leaching load in CT systems may result due to incorporated fertilizers or residues
in the interaggregate space where they are more susceptible to movement (Staric-
ka et al., 1992).

B. SUSTAINABILITY

In cultivation of virgin forest and grassland soils, the decline in organic C and
N, and corresponding increases in plant-available N are greatest during the initial
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10 years and then decreases with time (Hass et al., 1957; Campbell et al., 1976).
The loss of organic C and N and the erosion resulting from organic matter loss has
diminished productivity by deteriorating soil structure and has increased the need
for inorganic fertilizers. Decreased soil structure decreases infiltration as a result
of soil crusting and also limits the storage of available water and impairs root ex-
ploitation of the soil. It is evident that CT systems are not sustainable due to their
destructive nature. As the world population increases, the demand for food and
fiber increases, resulting in more pressure to increase our cultivation of very ero-
sive steep, fragile soils. Conservation tillage, especially NT management has the
potential reduce the problems associated with increased agricultural productivity.

The numerous benefits of NT over CT should result in NT rapidly being imple-
mented in all of the major agricultural area in the United States, but this has not
occurred as foreseen in the early 1980s.

1. Adoption

It was evident that U.S. farmers attempted to implement conservation tillage
practices in the early 1990s, but these trends for corn production have decreased
in recent years (CTIC, 1998). From 1990 to 1994 in Iowa, the percentage of NT
corn increased from 3.7%—19.1% (5.2-fold increase), but decreased to 11.8% (1.6-
fold decrease) of the corn production in 1998. The loss of conservation tillage ap-
pears to be increasing. Iowa alone lost 1 million corn and 400,000 soybean con-
servation tillage acres in 1 year from 1997-1998 (CTIC, 1998). At the same time,
NT soybean production increased from 1.9% in 1990 to 19.0% in 1994 (10-fold
increase) to 22.0% in 1998 (1.2-fold increase) (CTIC, 1998). On a nationwide ba-
sis, the trends found in Iowa agriculture are also occurring. No-tillage corn pro-
duction in the United States decreased from 18% in 1994 to 16.4% in 1998 as NT
soybeans increased from 24.2% in 1994 to 28.7% in 1998 (CTIC, 1998). In a per-
sonal communication with an Iowa farmer, who implemented NT for continuous
corn on 285 ha from 1994-1996, reported a consistent 13% yield reduction due to
poor spring performance (his evaluation) with NT compared to MT strips cost him
$126,000 at the corn value of $0.11 kg ™! (1994-1996). The farmer has abandoned
NT and now is returning to systems that incorporate more tillage management.

At present, there is very little information available for farmers that will help in
the transition from CT to NT. One of the largest problems is that NT nutrient man-
agement plans are not very different from CT management plans even though nu-
trient cycling, especially N availability is dramatically changed as a soil evolves
from CT to NT.

2. Productivity

Experiments conducted in all geographic areas of the United States have found
NT equal or superior to CT for grain yields for all years of the studies (Estes, 1972;
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Thomas et al., 1973; Bandel ez al., 1975; Moschler and Martens, 1975; Fredrick-
son ef al., 1982; Kitur ef al., 1984; Wendt and Burwell, 1985; Locke and Hons,
1988; Deibert and Utter, 1989; Fortin, 1993; Knowles e al., 1993; Ismail ef al.,
1994; Young er al., 1994; Kapusta er al., 1996; Tsegaye and Hill, 1996). Studies
have also determined that NT yielded less during the first years of initiation, but
then with time, yielded better than CT for grain production (Campbell er al.,
1993; Phillips ez al., 1997). Angle et al. (1993) reported in a Maryland study, de-
creased NT corn yields the first year of NT initiation, but increased NT yields up
to 32% by the fourth year over CT. Studies have also determined that NT contin-
uous corn yielded less than CT, but equal for corn-soybean rotation (Van Doren et
al., 1976; Chase and Duffy, 1991; Stecker er al., 1995; Kanwar et al., 1997) or that
different soil types yielded less with NT (Van Doren e al,, 1976; Dick, 1983; Wag-
ger and Denton, 1989; Dick et al., 1991) or in different years NT yielded less than
CT (House et al., 1984; Rao and Dao, 1992). Several studies have also found that
NT resulted in a consistent decrease in Ontario Canada corn and Northern Idaho
wheat yields compared with CT (Vyn and Raimbault, 1993; Haminel, 1995). A
summary of the yield comparison results with CT and conservation tillage is
shown in Table IIL. The findings that NT continuous corn reduces yield, but corn
in rotation with soybeans yields comparable with CT suggests that an early spring
N mineralization problem may exist with continuous NT corn.

Adopting conservation tillage practices can have a dramatic effect on soil nu-
trient status. It appears that nutrients in conservation tillage may become less avail-
able to plants than under CT (Blevins e al., 1983; Ismail er al.,, 1994) requiring a
better understanding of how nutrients cycle in NT soil. Farmers will be less will-
ing to switch to conservation tillage or continue using conservation tillage if the
only answer to reduced N cycling is application of more fertilizers especially dur-
ing times where farmers are being encouraged to use less N fertilizers.

The disadvantages of CT has been covered in the above discussion and in com-
prehensive reviews by Blevins and Frye (1993) and Johnson and Hoyt (1999). Sev-
eral of the disadvantages associated with conservation tillage include higher her-
bicide costs due to increased difficulty in controlling certain weed infestations,
lower spring temperatures at planting time, decreased soil pH due to stratification
of acid-producing fertilizers on the soil surface, and with poorly drained soils, con-
servation tillage may increase the existing wetness limitation. Conservation tillage
practices may increase cool temperatures problems during planting. Crop residues
left at the soil surface cause slower warming of soils during the spring and may re-
sult in serious problems in the northern U.S. Corn Belt (Griffith et al., 1977). The
major disadvantage of NT is the slower timing in the spring of N availability re-
sulting in slower plant development, although many studies from all geographical
areas in the United States has shown that NT can yield as productively as CT.

A greater research effort must be given to address NT problems, especially un-
derstanding the N cycle with NT to allow this management system, which has such
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great promise to reduce environmental problems related to agriculture and to m-
prove our agricultural sustainability, to reach its full potential.

C. NurrieNT CYCLING

Soil disturbance from tillage operations alters the microclimate variables, con-
tact between soil and residue and is an important regulator of decomposition in
agroecosystems (House er al., 1984; Wilson and Hargrove, 1986; Hendrix et al.,
1986). Tillage practices influences not only crop residue decomposition, but also
nutrient cycling and use efficiency. Nutrient transfer in ecosystems is accom-
plished through complex, biological mediated processes. Conventional tillage es-
sentially eliminates some of these biological processes by using energy from me-
chanical plowing (House er al., 1984).

Tillage has greatly accelerated organic C and N losses from the surface of na-
tive soils within the first 30—40 years (Fleige and Baemumer, 1974), suggesting
that nearly all of our knowledge on nutrient cycling has been conducted on C and
N degraded soils as a result of tillage for extensive time periods. Conversion of
conventional managed fields to conservation tillage results in changes in nutrient
availability due to the accumulation of organic matter that did not occur under CT.
The major NT change that affects nutrient cycling from CT is the stratification of
nutrients on the surface of the soil profile more the fashion of natural systems rather
than a complete mixing that results from CT (Follett and Peterson, 1988).

Changing land use and fertilizer management practices are among the factors
that most affect the decomposition of organic compounds in soils (Ajwa and
Tabatabai, 1994). The degree to which NT will change nutrient cycling is depen-
dent on factors such as soil moisture, temperature, aeration, pH, type and quality
of residues, length of time the tillage system has been in place, previous manage-
ment, and soil type. Before improved nutrient management plans for conservation
tillage can be suggested, scientists and producers must understand what portions
of the nutrient cycle that controls nutrient availability are influenced by NT. Since
nutrient availability is controlled by C mineralization, understanding the C and N
interactions in CT compared to NT may provide the needed information.

I1I. CARBON/NITROGEN INTERACTIONS WITH
DIFFERENT MANAGEMENT SYSTEMS

The supply of N is one of the most decisive factors for economic crop produc-
tion. It is well known that over 90—95% of the N in surface soils occurs in organ-
ic forms and can range as high as 4000 kg N ha~! for temperate soils (Powlson,
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1993), yet in most agricultural systems it is customary, necessary, to increase the
availability of N through fertlization. Organic soil N plays a key role in terms of
plant nutrition through direct and indirect effects on nutrient availability via mi-
crobial activity. A majority of our knowledge of C and N cycling has been obtained
on structurally degraded CT soils (> 50 years of tillage), but a disruption of the
steady-state N dynamics in CT soils occurs upon establishment of systems with
less soil disturbance such as conservation tillage (Wood er al.,, 1991b). Numerous
observations have suggested that there are significant differences between NT and
CT soils with regards to soil N transformations and fate of fertilizer N (Rice and
Smith, 1982). It is important to understand the distribution of N forms and cycling
and timing of plant-available N release under different systems and N availability
interaction with crop yields.

A. DisTRIBUTION OF NITROGEN FORMS

The importance of organic N from the standpoint of soil fertility has been long
recognized. At present, our knowledge of the forms of N in soil is limited to solu-
bility measurements of inorganic N (NH} and NO7), organic N (acid hydrolyzed
amino acids and amino sugars or fumigation released N), hydrolyzed NH] present
as clay-fixed NH or released by hydrolysis of certain amino acids, unidentified
hydrolyzed N and nonhydrolyzed N (Stevenson, 1994). The forms of organic N in
soil can be divided into two broad categories (i) organic residues consisting of un-
decayed and partial decayed products and (ii) soil organic matter or humus (Kel-
ley and Stevenson, 1995).

Literature gives very limited information on the N forms present in native grass-
land or prairies. Ajwa et al. (1998) found NOJ concentrations to a 7.5-m depth in
agricultural soil (cultivated 40-50 years) was 58.6 times the NOJ concentration
in an adjacent Kansas prairie (within 1 km), although the N Hj concentrations were
the same and the prairie had a greater total N content. Follet and Schimel (1989)
found total N concentrations had decreased to 73, 68, and 50% of the native Ne-
braska grassland for NT, SM and CT, respectively, after 16 years of cultivation.
Meints and Peterson (1977) reported that cultivation caused a decrease in the to-
tal N and the concentration of amino sugars, amino acid N, hydrolyzable N, and
nonhydrolyzable N, but affected the proportions of N remaining by increasing per-
centages of nonhydrolyzable and amino N and decreasing hydrolyzable N.
Martens (2000) found that a native prairie had greater total N than a cultivated ad-
jacent soil, but the proportion of amino N to total N remained the same in the
prairie and cultivated soil after ~90 years of tillage. Arshad er al. (1990) reported
after 10 years, a barley (Hordeum vulgare) NT system had more total N, amino
acids and amino sugars than an adjacent CT barley field. Christensen e al. (1994)
found a NT system had less inorganic N and more organic N than a CT system.
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Parkin and Meisinger (1989) found that 4 years of continuous corn with CT had
substantially higher NOJ concentrations than NT to a depth of 4 m in a Maryland
comparison. It is evident that tillage releases N from all of the N pools present in
soil (Keeney and Bremner, 1964), and this released N has a great impact on both
crop yields and water quality.

Understanding the timing of organic N release for plant assimilation is of great
importance due to recent findings on the implications of early season soluble N
levels and resulting yields. Binford e al. (1992) found that a critical spring NO7
concentration of 23-26 mg N kg ™! soil in the surface 30 cm for 45 site years un-
der MT or CT is required for optimum corn yields. A large supply of NO; early
in the growing season is very important for producing corn high yields, because
large amounts of inorganic N are required once corn plants reach the fifth leaf stage
(Dou et al., 1995). Johnston and Fowler (1991a, 1991b) found that delaying N
availability in winter wheat production by even three weeks prevented early spring
N uptake, reduced grain yield, and grain protein yield due to lack of available N
when the grain yield potential is being determined in wheat. Sweeney (1993) de-
termined early season nutrient availability is very important for sorghum produc-
tion because maximum nutrient accumulation preceded the time of maximum dry
matter growth rate. The result agrees with other research that has suggested early
season N availability is of extreme importance since it is at the time of growing
point differentiation, the number of kernels per head are being set for sorghum
(Vanderlip, 1979).

B. MicrosiaL Biomass

Agronomic practices such as cultivation, residue, management, and fertilization
regulate microbial activities, which affect the processes of organic matter turnover
and nutrient cycling (Biederbeck et al., 1984; Doran and Smith, 1987). Although
soil MB-C accounts for a small portion of the total organic C in soils, MB is re-
sponsible for release of nutrients for crop utilization. Angers ef al. (1993) report-
ed that soil MB accounted for only 1.2—1.4 % of the organic C in CT and up to
3.5-5.1% of organic C with NT. Microbial biomass (MB) is considered the trans-
formation agent of soil organic matter, a labile reservoir of nutrients such as C, N,
P, and S (Jenkinson and Ladd, 1981) and the composition of soil microbial com-
munities may affect the decomposition of added organic residues (Sharma ez al.,
1998). In addition, changes in microbial nutrient status during litter decomposi-
tion have been reported. Scheu and Parkinson (1995) found that during the early
stages of residue decay, microbial growth is limited by N and that in later stages,
microbial growth is limited by C, resulting in changes in the composition of mi-
crobial communities during the decomposition process. Additions of N fertilizers
to native grasslands resulted in higher MB-N and reduced MB-C possibly due to
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biomass because fungal C assimilation efficiency can range from 30-70%, where
bacterial C assimilation efficiencies may only range from 20-40% (Holland and
Coleman, 1987). Beare er al. (1990) reported that the plant residues have a greater
MB and a higher proportion of physiologically active microorganisms dominated
by fungi during the early stages of residue decay when compared to soil.

Although the size of the microbial N pool is relatively small, its rapid turnover
makes a considerable confribution to mineralization (Anderson and Domsch,
1980). The microbial biomass mediates the great majority of C and N transforma-
tions and is responsible for N transformations such as ammonification, nitrifica-
tion, and denitrification in soil.

C. AMMONIFICATION OR IN MINERALIZATION

Mineralization has been defined as the heterotrophic microbial transformation
of N from the organic state into the inorganic forms of NH} or NH,. Mineraliza-
tion of N from soil organic matter, animal and green manures, and crop residues
contributes greatly to the soil N budget and to total plant N availability (Kolberg
et al., 1997). Tillage systems also affect the release of plant available N. Conven-
tional tillage of native prairies releases large amounts of plant available N as NOZJ
due to fast soil OM mineralization (Rasmussen et al., 1980; Balesdenteral., 1988),
which appear to stabilize at approximately 50% of the initial values. Most impor-
tant, early season N mineralization is slower under NT when compared to CT (Do-
ran, 1980b; Fox and Bandel, 1986; Dou e al., 1995; Rasse and Smucker, 1999),
even though NT soils have increased organic N content than CT soils (Christensen
et al., 1994). Stecker et al. (1995) found that continuous corn under MT con-
tributed 54 kg N ha™! year™ ! due to mineralization while a recently established
NT contributed only 24 kg N ha™! year™! for continuous corn production span-
ning five-site years on Missouri soils. The lower mineralization may be due to the
higher moisture, lower oxygen levels and soil temperatures that have been report-
ed for NT as compared to CT (Rice and Smith, 1982). Systems recently convert-
ed from CT to NT have shown a N deficiency at low N application rates (Bandel
et al., 1975; Blevins et al., 1977; Bundy et al., 1992) due to slower mineralization
and nitrification and greater N immobilization (Doran, 1980a, 1980b). Although
long-term NT can improve the efficiency of N cycling due a larger supply of or-
ganic N from higher levels of residue on the soil surface (Black, 1973; Rice er al.,
1986; Maskina et al., 1993) and an increase in the active organic N pools (Mc-
Carty er al., 1998). Franzluebbers ef al. (1996) reported that canola mineralization
during a growing season was 57% for buried residue in CT and only 30% for sur-
face residue in NT. Beare er al. (1993) and Buchanan and King (1993) also re-
ported a much faster decomposition rate (up to a 3.4-fold) for incorporated crop
residues when compared to surface decomposition rates. During the initial miner-
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alization of crop residue under anaerobic or aerobic conditions, the rate was iden-
tical for the first 14 days, yet a 3.5-fold increase in NO concentration was noted
due to lower metabolic efficiencies of anaerobic microbial populations (Gale and
Gilmour, 1988). Disruption of steady-state N dynamics in CT soils occurs upon
establishment of systems with less soil disturbance (Wood er al., 1991b). No-
tillage results in greater potentially mineralized C and N and less microbial C lim-
itation, when compared to CT systems (Follet and Schimel, 1989). Ajwa et al.
(1998) also found that native tall grass prairies had higher C and N mineralization
rates than a CT soil (<1 km away), but the prairic soil had the lowest potential
mineralized organic N to total N ratioc when compared to the CT soil. These trends
were also found for a North Dakota study (Schimel, 1986). It is of interest that N
mineralization in native prairie and NT was not proportional to soil MB as was
noted for C mineralization (Follet and Schimel, 1989), suggesting increased tillage
decreases the capacity to immobilize and conserve mineral N by reducing avail-
able C substrates for microbial growth (Tracy er al., 1990). A summary of residue
mineralization rate with CT or conservation tillage is presented in Table V.

The type of the crop residue also affects when residue N will be released for
subsequent crops. Power et al. (1986) reported that }SN-labeled soybean residue
in NT was completely mineralized and the N assimilated by mid-July of the next
cropping year, where essentially none of the corn residue !N was recovered by
the next years crop. Broder and Wagner (1988) determined that buried soybean
residue decomposed at a faster rate (68%) than buried corn (42%) or wheat (47 %)
residue during the first 32 days of incubation. Also, increasing cropping manage-
ment intensity in dryland agriculture with NT will increase potential and net C and
N mineralization (Wood ef al., 1990).

Tillage is clearly an important regulator or driving variable for element cycling
especially N in agrosystems (Buchanan and King, 1993). Mineralized crop residue
N is believed to be first assimilated into MB (Amoto and Ladd, 1980) before be-
coming available for plants. A Colorado study found that soil profile (6.1 m depth)
NO7 levels in native prairie sites was about 90 kg NO3” — N ha™! compared to
261 kg ha™! for CT dryland winter wheat/fallow fields (6.1 m depth) before wide
spread nitrogen applications. Since no nitrogen fertilizer had been applied to the
agricultural fields, the approximate threefold differences in NOJ concentration
was due to the tillage operations enhancing OM mineralization (Westfall ez al,
1996). The study cited indicates that leaching of NOJ to the vadose zone and
groundwater was a potential even before N fertilizer use.

Keeney and DeLuca (1993) compared water flow and NOJ records from 1945
and the years 19801990 from a U.S. Geologic Survey gaging station that was sit-
uated on the Des Moines river just south of Des Moines, Iowa. The area drained
by this watershed is approximately 78% corn (Zea mays L.) and soybean (Glycine
max L.) row crop production. During this time period, the growth of fertilizer ap-
plications for this watershed ranged from less than 0.2 kg N ha ! in 1945 to a max-
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imum of 162 kg N ha™ ! in 1985 (Keeney and DeLuca, 1993). Fertilizer use in the
U.S. Corn Belt paralleled the Towa data and increased from 100,000 metric tons in
1945 to 5.72 X 10° metric tons in 1976, representing a 57.2-fold increase in fer-
tilizer N use (Stanford, 1982). Comparison of river flow rates and NOJ levels be-
fore heavy N fertilizer applications (1945) with an average flow and NO; levels
for the years 1980-1990 found very comparable flows and NO7 levels (5.0 mg
and 5.6 mg ™! for 1945 and the average 1980-1990, respectively) for both times
suggesting that other sources of NO7 than fertilizer applications must be consid-
ered. Mineralization of soil N was estimated to be the largest contributor of min-
eral N to cropland in the watershed in 1945 and should still be considered a major
source today. Enhanced mineralization of soil organic matter by tillage contributed
areatly to both sets of measurements and can range from 40-120 kg N ha™ Uyear™!
(Keeney and DeLuca, 1993). Gast et al. (1978) also reported fertilizer applications
made little difference in NOJ" leaching from CT soils receiving 201 12kgNha™!.
The studies emphasize that tillage is one of the greatest contributors of N leaching
to surface and ground water and the practice of row crop culture must be altered
to maximize the use of residual and applied N. Conservation tillage, especially NT,
has the greatest potential to limit nutrient pollution to water supplies because NT
has slower N mineralization and greater N retention due to more efficient N cy-
cling when compared with tilled systems. It is important to understand that a ma-
jority of this N that is conserved under NT can rapidly become available and po-
tentially lost from the system when tillage is introduced as a modifier of perceived
higher bulk density problems (Pierce et al., 1994).

D. NITRIFICATION

Nitrification is controlled by a series of chemoautotrophic bacteria and consists
of two distinct stages; the oxidation of NH} to NOJ and the subsequent oxidation
of NO; to NOJ. Soil organic N that has been mineralized to NH will be in com-
petition for assimilation by the growing plants, heterotrophic microorganisms and
NH; oxidizing populations of the genera Nitrosomonas spp. The occurrence of
NO7 and NH; or the ratio of NOJ to NH in native or reestablished ecosystems
has been found to be depend on the length of time the systems have been in place
(Christensen and MacAller, 1985). In tilled ecosystems, NO; is the dominant form
of mineral N (Rice and Smith, 1983), where as NH is more abundant in older na-
tive systems, suggesting that nitrification is repressed in native systems (Stienstra
et al., 1994). Rice and Smith (1983) found higher ratios of NO; to NH} in NT
compared to CT, but approximately the same N concentration for both CT and NT
suggesting lower nitrification rates.

It has been suggested that nitrification rates are slower in NT compared to CT
(Rice and Smith, 1983) due to the low NO; to NHj ratio. Doran (1980a, 1980b)
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(NOJ and NOJ) to N,, and NH, volatilization are the major pathways of N loss
from soil. Nitrogen balance experiments conducted with lysimeters have suggest-
ed that N deficits are on the order of 15~20% of N applied and can reach 50% if
NH containing fertilizers are applied to the soil surface under certain conditions.
Soil tillage practices influence the loss of fertilizer N due to the stratification of
plant residues on the soil surface and the reduction of evaporation that results in a
higher water content in native prairies and NT systems compared to CT. The high-
er moisture and C substrate levels present in the surface horizon of NT soils can
influence the losses of N via the denitrification and NH,; volatilization pathways.

1. Denitrification

Tillage management of soils can influence the rates of denitrification. The mulch
of organic residues that normally accumulates on the surface of NT helps increase
infiltration, reduces evaporation, and often results in higher soil moisture levels,
resulting in greater possible denitrification rates with NT (Rice and Smith, 1982).
Denitrification is strongly dependent on organic C availability and is expecied to
be higher in soils that contain a high level of organic C such as NT soils.

The potential for greater denitrification in NT soils was determined by Doran
(1980a, 1980b) who found higher counts of denitrifying bacteria in the top 7.5 cm
of NT as compared with CT, but lower counts in the 7.5-15-cm depth. The influ-
ence of the size of denitrifying populations and soluble C was confirmed by ex-
periments showing denitrifying activity was substantially higher in the 0-7.5-cm
depth for NT soils when compared with CT soils at six long-term comparison stud-
ies, but at the 7.5—15.0-cm depth, the denitrification potential for CT soils was the
same or higher that the NT soils (Linn and Doran, 1984). Parkin and Meisinger
(1989) found that in the surface 0-30 cm depth, laboratory measured denitrifica-
tion potential was higher in NT soils treated with glucose and NO3 as compared
with CT, but in core samples taken from the field in April, NT has significantly
lower NO; concentrations to a depth of 4 m as compared with CT plots. Since the
samples were taken before fertilization and when soil temperatures were cool, lit-
tle denitrification should have occurred before the sampling, suggesting that NO;
levels in NT are lower due to other N pathways and not a higher rate denitrifica-
tion. Denitrification is temperature dependent with little activity reported below
10°C even in totally flooded cores (Craswell, 1978). As temperatures increase, the
minimum soil water content for denitrification to occur decreases, but as temper-
atures increase so would the rapid plant uptake of NOJ, limiting the substrate need
for biological reduction of NOJ. Jackson et al. (1989) determined that the half-
life for NH} in a grassland was about one day, but NOJ was consumed by plants
and microorganisms as fast as it was produced suggesting that in NT management,
the higher density of plant roots in the soil surface horizon would limit the NO7
available for denitrification. This was confirmed by work of Parkin and Meisinger
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(1989), who determined that tillage practices had little influence on denitrification
below the root zone. Aulakh er al. (1984) reported gaseous N losses due to deni-
trification for NT were 12-16 kg N ha™! year ! compared to 3-7 kg N ha™!
year~! for CT and accounted for a very small portion of the N balance. Rice and
Smith (1982) concluded that N'T may increase the potential for denitrification com-
pared to CT, but supports the findings of Aulakh e al. (1984) that the significance
of denitrification for reducing NOJ concentrations under NT may not be greater
than the increased plant N uptake or N immobilization processes in NT.

2. Ammonia Volatilization

Volatilization of NH, has been attributed to the cause of low N use efficiency
observed when NH} containing fertilizers are applied directly on the soil surface.
A number of soil and environmental factors affect the amount of N lost through
NH, volatilization including soil pH, cation exchange capacity, soil organic mat-
ter content, the amount and type of residue present, soil moisture content, tem-
perature, humidity, and N source (Ernst and Massey, 1960; Fenn and Kissel, 1974;
Terman, 1979). A thorough review on the different factors affecting NH, loss from
soil was presented by Nelson (1982).

Low fertilizer N use has frequently been observed when NH; containing fertil-
izers such as urea or urea blends are applied directly to the surface residue in N'T
corn production systems (Keller and Mengel, 1986). The accumulation of residue
on the surface of NT soils and increased moisture content has been aitribuied to
increasing NH, volatilization from NH} containing fertilizers when compared to
CT soils (Bandel er al., 1980). Surface residue accumulation under MT or NT sys-
tems has been found to increase the activities of the urease enzyme three- to four-
fold when compared to CT (Doran, 1980a; Dick, 1984). This enzyme is very im-
portant in soils where urea or urea containing fertilizers are applied. The low cost
and high N content make urea a very attractive N source for agriculture, but large
losses of surface applied urea-N from 30-50% of the N applied has been report-
ed due to rapid hydrolysis of urea to NH, when compared to soil incorporation
(Keller and Mengel, 1986; Fowler and Brydon, 1989). Much of this enzyme ac-
tivity increase with conservation tillage practices has been reported to be due to
the presence of a larger proportion of physiologically active microbial populations
on the organic residue as compared to the soil with a significant difference between
different residues tested (Beare e al., 1990). Barreto and Westerman (1989) re-
ported that urease activity was uniform under CT to a depth of 60 cm, where un-
der NT or MT, urease activity was significantly increased in the top 10 cm. The
activity of the undecomposed wheat straw grown at the sites was 28-fold greater
than found in the soil and was reported to be the major source of the observed in-
crease in enzymatic activity.



NITROGEN CYCLING UNDER DIFFERENT SYSTEMS 183

IV. CONCLUSIONS

Tillage systems influence soil properties. After adoption of NT practices in the
early 1990s, farmers in the United States have reverted to more tillage due to per-
ceived problems with NT. In general, as a soil is converted from CT to NT, less
erosion occurs, with greater aggregate stability, water infiltration and availability,
surface consolidation, and organic matter content. The stratification of surface
residues results in cooler temperatures early in the season with the higher C and
available water content influencing the nutrient availability. Understanding the
physical changes in a NT soil that results in greater nutrient content of the soil, but
overcoming reduced nutrient availability during the expression of early season
yield potential is one of agriculture’s greatest challenges for improving NT per-
formance. One important finding of this review is the competition for applied and
mineralized soil N between N immobilization, nitrifiers and plants that is increased
when crop residue is stratified on the soil surface with NT management. Improved
early season crop growth due to increased N availability under NT must be un-
derstood to change the trends in NT abandonment for corn production.
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